Students Name:	•••••		• • • • • • • • • • • • • • • • • • • •
School Name		Index Numb	er

P425/1 PURE MATHS PAPER 1 3HOURS JULY/AUGUST 2025

HES MOCK EXAMINATIONS 2025

UGANDA ADVANCED CERTIFICATE OF EDUCATION

PURE MATHS PAPER 1 3 HOURS

INSTRUCTIONS

Attempt all questions in section A and any 5 in section B

SECTION A

- 1. Given that $f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) f(x)}{h} \right)$ is the limit definition of the derivative of a function f(x), use it to find the derivative of a function $f(x) = 5x^2 + 3x$ (5 marks)
- 2. Find the square root of $5 + 2\sqrt{6}$ (5 marks)
- 3. Given that \underline{w} and \underline{v} are inclined at 60° to each other and \underline{u} perpendicular to $\underline{w} + \underline{v}$. If $|\underline{w}| = 8$, $|\underline{v}| = 5$ and $|\underline{u}| = 10$. Find $|\underline{w} + \underline{v} + \underline{u}|$ (5 marks)
- 4. Find the distance between the foci, the eccentricity and length of the latus rectum to the ellipse $3x^2 + 4y^2 = 12$. (5 marks)
- 5. Show that $sin2x sin2xcos2x + sin2xcos22x + \cdots$ is a geometric sequence and prove that $S_{\infty} = tan x$ (5 marks)
- 6. Determine the values of X and Y which satisfy the equation $x^2 + 4xy + y^2 = 13$ and $2x^2 + 3xy = 8$ (5 marks)
- 7. Use Maclaurin's theorem to find the series expansion of $tan^{-1}(x)$ up to the term in x^3 . (5 marks)
- 8. The area of the segment cut off by y = 5 from $y = x^2 + 1$ is rotated through a half turnabout y = 5. Find the volume of the solid generated (5 marks)

SECTION B

- 9. a) Given that A(2,13,-5), $B(3,\beta,-3)$ and $C(6,-7,\alpha)$ are collinear, find the values of the contacts α and β . (5 marks)
 - b) The equation $\frac{(x-3)}{2} = \frac{(y-5)}{1} = \frac{(7-Z)}{4}$ and $\frac{(x+1)}{3} = \frac{(4+y)}{1} = \frac{(2-Z)}{2}$ represent two pipes P_1 and P_2 respectively in a chemical plant where length is measured in metres. A bypass is to be installed connecting P_1 and P_2 . Find the length of the shortest pipe that may be fitted. (7 marks)

- 10. a) Given that W = x + iy where x and y are real. Show that the locus of a point P(x, y) is a circle of $\frac{(W+1)}{(W+2)}$ is purely real. Hence deduce the centre and radius of the locus of P (6 marks)
 - b) Find the cube root of 12i 5 (6 marks)
- 11. a) Show that $tan4\theta = \frac{4t(1-t^2)}{t^4-6t^2+1}$, where $t = tan\theta$ (6 marks)
 - b) Solve the equation sinx + sin5x = sin2x + sin4x for $0 < x < \frac{\pi}{2}$ (6marks)
- 12. a) Show that the circles with equations $x^2 + y^2 + 4x 2y 11 = 0$ and $x^2 + y^2 4x 8y + 11 = 0$ are orthogonal and find the length of the common chord (6 marks)
 - b) Find the equation of a circle which passes through the point of intersection of the circles $x^2 + y^2 = 4$ and $x^2 + y^2 2x 4y + 4 = 0$ for which x + 2y = 0 is a tangent. (6 marks)
- 13. a) Given that $\binom{20}{r} = \binom{20}{r-4}$ find the value of r. (6 marks) b) A polynomial is given by $f(x) = x^3 + Bx^2 + x 6$. The ratio of the remainder when f(x) is divided by (x + 1) to the remainder when divided by (x 2) is -1: 5. Find the value of B.
- 14. Given that $y = \frac{x^2 x 6}{x 1}$. Show that y can take on all real values for real values of x and hence sketch the curve. (12 marks)

END

13.